do i need a bigger ac unit

Why A Bigger Unit Is Not Always Better Despite what many believe, installing a bigger air conditioning system does not always equate to a higher comfort level or better performing system. Installing properly sized equipment requires that certain factors be considered. Jon Wayne comfort advisors understand this and can perform various calculations to build you the perfect cooling system. When considering a new system, your AC contractor should always perform a Manual J Load calculation on your home before recommending new equipment. Going by the size of the previous system can be unwise as the previous system might not have been calculated properly. It's also possible that changes to the home have increased or decreased your homes efficiency. Your Jon Wayne comfort advisor will also inspect other aspects of your system including the condition of your ducts and attic insulation. Dealing with problematic issues in this area will ensure that your new system will operate and peak efficiency and provide you with the most comfortable environment possible.

Problems That Can Occur With Oversized System The follow are symptoms of systems that were not properly calculated before being installed. As an air conditioning system cools the air in your home, it is also drying the air.
wall heating and cooling units for homesHumidity in the air is removed and sent outside which helps you feel more comfortable.
what brand ac unit is the bestThis drying process occurs while your unit is running.
how to choose an ac unitOver-sized units do a great job of pumping a lot of cold air into your home but they do so too quickly, which means your air conditioning system does not run long enough to remove the humidity from the air completely. This leads to a wet, sticky environment which can lead to other problems listed below.

Also keep in mind that oversizing a newer high efficiency system is more likely to create high humidity issues than it did with the older equipment being replaced. High humidity can lead to mold growth in your home. According to the EPA, the American Medical Association and the American Lung Association, to ensure that mold growth is kept at bay, it is important that indoor humidity levels are kept below 50%. As we explained in the previous section, an oversized system just can't do that. Those who suffer from allergies are usally also allergic to tiny dust mites and their droppings. Since dust mites thrive in damp environments, you are more likely to have allergy issues if you have an oversized unit. In addition to poor humidity control, an oversized system will lead to poor air distribution and uneven temperatures throughout your house. When your air conditioning system short-cycles, the farthest rooms in your home don't get enough cool air because the unit does not run long enough to move all the air through the cooling process.

An oversize unit is more expensive in several ways. It's more expensive to purchase. Excessive cycling (the process your unit goes through when it starts and stops each time) is hard on system and can lead to repair issues. It also takes about 12 minutes for your system to reach its rated efficiency. You are also likely to lower your thermostat to deal with the excessive humidity. A smaller AC unit (properly sized for your home) running for longer periods of time will actually use less energy and save you money. Bigger units push around a larger volume of air which is likely to cause your ducts to not be able to handle the increased air flow. This reduces efficiency and increased noise. A properly sized unit runs quieter and is much less noticeable. More Breakdowns and Repairs Like any machine, the more often it has to start and stop, the more wear and tear it experiences. Oversizing your air conditioner will lead to more frequent breakdowns, higher repair bills and a shorter lifespan.

Are you considering a bigger AC unit because some rooms are too hot? The better solution is to have a Jon Wayne Comfort Adviser perform a Complete Home Evaluation to determine the exact cause of the problem and the most economical solutions available. Special tests like the Blower Door Test and advanced equipment like thermal imaging technology make it possible to properly diagnose these kinds of issues and then resolve them properly.. Does your unit run non-stop? If it does, that's ok if it's really hot or cold outside and your comfortable. If it's running non-stop and it never seems to get to a temperature you desire, then you may need a larger system. Again, a Jon Wayne Comfort Advisor will be able to assist you with the process. They will look for simple issues like improper Freon levels and then inform you of your Repair vs. Replace Options. If you are experiencing these types of problems, you definitely want to have a Jon Wayne Comfort Advisor come to your home and give you a free estimate on what it will take to resolve them.

The Blower Door Test Manual J Load Calculation Jon Wayne is proud to be affiliated with these fine organizations: Schedule AC Service Now: : : Solar Info: The Down Low on Everything Up High. I am not sure what information most folks think they will find in a solar tutorial. Rain or shine we get a huge number of calls about solar power each day. We will attempt to answer the questions most often asked so we can save you a phone call. Before we get started we think you need to know that solar power is not the cure all for replacing spent energy. For example some are trying to recharge batteries for a Trolling Motor, Boat, RV, House, Electric Scooter, Backwoods Cabin, etc. and they want it done in very short time, usually in just a few days. Assume you take a discharged 100-amp hour battery and charge it with a 30-watt solar panel under ideal summer time light conditions. After a full week the battery will be just about fully charged. Using this example you can see that it will take at least 100-watts of solar power to recharge a 100-amp hour battery in a few days.

Keep in mind that it takes direct sunshine on the surface of the panel to produce the maximum rated power of a solar panel. Conditions such as an overcast sky, shadows, improper mounting angle, equatorial direction or short winter days will reduce the actual solar panel output to below the rated values. Most solar products offer are designed for 12 VDC, but we do have limited availability on a smaller 24 volt panels. Typically when 24 volts or greater is needed, solar panels may be wired in series, or we can special order solar panels that are made to deliver more DC Volts such as 24, 36, 48 etc. Anytime you use a panel that is over 5 watts rated output, we recommend using a solar controller. Actually, a charge controller is a good idea in a majority of applications. A charge controller can provide several benefits such as preventing overcharge, improve charge quality, and prevent battery discharge in low or no light conditions. Some solar panels are made with blocking diodes pre-installed that prevent battery discharge during low or no light conditions.

In most case where a 6-watt or larger solar panel is installed use of a charger controller is highly recommended. In a nutshell, solar charge controllers act like an on and off switch, allowing power to pass when the battery needs it and cutting it off when the battery is fully charged. Something to be aware of when selecting a controller is that they are typically rated in amps, while photovoltaic panels are typically rated in watts. So the morningstar SS-6, 6 amp controller will work with nearly every panel we sell right up to about 70 watts. Solar panels manufacturers rate solar output in watts. As a rule of thumb a rating of 15 watts delivers about 3,600 coulombs (1 AH) per hour of direct sunlight. As an example, the SP-5 panel can output .33AH per hour of direct sunlight. This is a very popular panel for maintaining single and dual batteries for stand-by and storage applications. Typically this power output is stored in a battery for use when the panel is not producing energy.

This energy is stored for later use and also allows the battery to act as a filter to prevent damage to any sensitive electronics you may be powering. The first thing to remember about solar power is that it is all a matter of numbers. The power you require, vs. power the panel can put out. Before you can even get started when purchasing a panel, you need to know how many amp hours or watts you will need to produce in a set period of time; This figure could be measured in hours or days. Since there are 24 hours in a day, we suggest you use that as a baseline. First, get your total electrical consumption in that time period. Then figure the amount of direct sunlight the solar panel will receive in that time period and come up with a total amount of watts-hours needed. You should always err on the side of caution and over-estimate your power needs. This will help compensate for variables like shade, clouds, panel angle, etc. Once you have a good handle on your power requirements, I suggest you go to our Solar Calculator

Solar panels ratings are calculated in bright direct sunlight. Conditions such as indirect sunlight, overcast and partial shade will decrease the output. We always recommend over-sizing the size of your solar array, as these conditions occur often. Also remember that the length of daylight in summer vs. winter can be quite different. This can be done as long as the device is designed for such an application and not sensitive to voltage variations. It is best to use a battery as a storage container for energy that will provide constant source of stable, reliable power. Nearly all solar panels are designed for outdoor installation, as this is where they will recieve the best, most direct exposure to sunlight. Remember that anything less than that will cause the panel to produce less than it's full rated power A periodic inspection to remove dirt, debris and check electrical connections is all that is needed.Keeping the panel clear of snow and debris will allow for better results.

Performance from a solar panel will vary but in most cases guaranteed power output life expectancy is between 3 and 25 years. This guaranteed life expectancy rating is usually 80% of the published rating of the Solar panel. Of course this will vary from manufacturer to manufacturer, and as always, you typically get what you pay for. Watch out for those cheap panels made in Pakichinastan. Many folks use an inverter to convert 12 VDC to 110 VAC. Inverters, because whenever you change power from one form to another, are power gobbling monsters and should be avoided when possible. If you have a choice of a 12 volt DC powered device or 110 volt AC device, go with the 12 volt DC device. There are DC devices on the market that either step down or step up DC power and these also use significantly more power than otherwise. Formulas and Examples for 12 & 24 Volt DC Systems This “Rule of Thumb” is intended as a general guide for estimating the DC amps required operating a DC to AC inverter.

Since the calculations yield approximate values, an appropriate safety factor should be considered when designing and specifying system components, for example: wire, size, and length. This basicly is legalese for "oversise your system" Formula: 12 volt inverters require approximately ten (10) amps DC input for each 100 watts output power used to operate an AC load. Example: How many DC amps will a 12-volt inverter require to operate three 500-watt quartz lights, or a 1500-watt electric heater? This is the DC current the inverter will use to operate the 1500-watt load. If these 150 amps are drawn from the battery for one hour, 150 amp hours of battery power will be used. To support 150 amp hours of battery power 300 amps of battery capacity should be used for maximum battery life and performance. Formula: 24 volt inverters require approximately five (5) amps DC input for each 100 watts output power used to operate an AC load. Example: How many DC amps will a 24-volt inverter require to operate three 500-watt quartz lights, or a 1500-watt electric heater?